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abstract: Despite the many triumphs of comparative biology dur-
ing the past few decades, the field has remained strangely divorced
from evolutionary genetics. In particular, comparative methods have
failed to incorporate multivariate process models of microevolution
that include genetic constraint in the form of the G matrix. Here we
explore the insights that might be gained by such an analysis. A
neutral model of evolution by genetic drift that depends on effective
population size and the G matrix predicts a probability distribution
for divergence of population trait means on a phylogeny. Use of a
maximum likelihood (ML) framework then allows us to compare
independent direct estimates of G with the ML estimates based on
the observed pattern of trait divergence among taxa. We assess the
departure from neutrality, and thus the role of different types of
selection and other forces, in a stepwise hypothesis-testing procedure
based on parameters for the size, shape, and orientation of G. We
illustrate our approach with a test case of data on vertebral number
evolution in garter snakes.

Keywords: G matrix, genetic line of least resistance, maximum like-
lihood, selective line of least resistance, Thamnophis, vertebral
number.

A large literature on the comparative analysis of evolving
traits has blossomed during the past 25 years (Felsenstein
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1985; Harvey and Pagel 1991; Lynch 1991; Martins and
Garland 1991; Martins 1994, 2000; Rohlf 2001; Steppan
2004; Carvalho et al. 2005). Interest in tracing trait evo-
lution on independently estimated phylogenies has been
responsible for putting a new face on comparative biology.
New methodologies have allowed investigators to assay
statistical associations between trait values and putative
selective pressures (e.g., Darst et al. 2005; Ord and Martins
2006; Strmberg 2006) and to test alternative models of
evolutionary process (Hansen 1997; Butler and King
2004). Despite success on these and other fronts, the new
comparative biology has been strangely divorced from evo-
lutionary genetics. Process models have been adopted from
evolutionary genetics to provide the substructure for sta-
tistical inference (Martins and Hansen 1997), but estimates
of genetic parameters usually play no role in comparative
biology. The divorce between comparative biology and
evolutionary genetics is especially vivid in the case of con-
tinuously distributed phenotypic traits. For these kinds of
traits, which are often polygenic, quantitative genetic mod-
els promise deep understanding of adaptive radiations
(Hansen and Martins 1996; Arnold et al. 2001; Bégin and
Roff 2004). Furthermore, relevant parameters of inheri-
tance and selection have been estimated in many natural
populations (Mousseau and Roff 1987; Kingsolver et al.
2001; Steppan et al. 2002). Despite the abundance of rel-
evant models and parameter estimates, evolutionary ge-
netics has had virtually no impact on comparative biology.
The separation undoubtedly has multiple causes, but a
primary one is the lack of comparative methods that in-
tegrate information on inheritance and selection. Consider
the G matrix, which currently plays no role in virtually
any comparative method (below we note the few excep-
tions). This matrix of additive genetic variances and co-
variances is central to all mathematical models for the
multivariate evolution of phenotypic traits (Lande 1979;
Lande and Arnold 1983; Blows 2007). What insight would
be gained by incorporating estimates of the G matrix and
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Table 1: Variables used in the analyses

Symbol Size Definition

m Scalar Number of traits
n Scalar Number of taxa
z̄t m Vector of population mean trait values at time t
Ne Scalar Effective population size
Ne Scalar Harmonic mean of Ne over multiple generations
G m-by-m Matrix of additive genetic variances and covariances for m traits within a population
G m-by-m Arithmetic mean of G over multiple generations
li Scalar Eigenvalue i of G
gi m Eigenvector i of G
gmax m Leading eigenvector (first principal component) of G; genetic line of least resistance
S Scalar Size parameter (trace) of G
� m � 1 Vector of shape parameters of G
J (m2 � m)/2 Vector of orientation parameters of G
M m-by-m Matrix of mutational (co)variance per generation
D(t) m-by-m Divergence matrix of trait (co)variance among independently evolving populations at time t
dmax m Leading eigenvector (first principal component) of D

∗dmax m Major axis of divergence after correcting for phylogeny; equivalent to maximum likelihood
estimate of assuming a neutral modelgmax

g m-by-m Matrix of quadratic coefficients of stabilizing and correlational selection within a population
q m-by-m Matrix of coefficients (analogous to variances and covariances) describing a Gaussian fitness

surface
qmax m Leading eigenvector of ; selective line of least resistanceq

T n-by-n Matrix of shared ancestry among taxa (time in generations)
A (m # n)-by-(m # n) Divergence matrix of trait (co)variance among populations with shared ancestry
m (m # n) Vector of expected trait means across taxa
z (m # n) Vector of observed trait means across taxa
v Varies with model Vector of parameter values
ẑ0 m Vector of maximum likelihood estimates of ancestral trait means

Note: Bold type indicates vectors or matrices. All vectors are column vectors. Transposed vectors are indicated in the text by a prime, inverse matrices

by an exponent of –1, and determinants of matrices by F F.

process models based on its microevolutionary role into
comparative methods?

One of the major goals of comparative biology is to
identify the nature and role of selective forces that have
shaped adaptive radiations and evolutionary diversifica-
tion. To accomplish this identification, we must first spec-
ify a neutral model of evolution in the absence of selection.
The neutral model provides a benchmark against which
actual data on trait divergence can be compared. A number
of methods of this kind have been proposed for the uni-
variate (single-trait) case (Lande 1977; Charlesworth 1984;
Turelli et al. 1988; Lynch 1990; Lynch et al. 1999; Estes
and Arnold 2007). These approaches assess the statistical
significance of departures from neutral rates of evolution.
Enough empirical tests have been performed to provide
general conclusions: on short timescales, rates are typically
faster than expected under neutrality (Merilä and Crnok-
rak 2001; McKay and Latta 2002), but on long timescales,
they are usually slower—often much slower (Lynch 1990;
Hansen and Houle 2004; Estes and Arnold 2007). We can
with confidence reject the general hypothesis that rates of

trait evolution at all timescales conform to neutral expec-
tations. Consequently, the point of these tests is not to
continue to beat the dead horse of neutrality. Instead,
neutral models allow us to diagnose specific characteristics
of evolutionary forces operating on a set of taxa. For in-
stance, rates significantly slower than neutral indicate the
presence of a restraining force (e.g., stabilizing selection),
while rates faster than neutral indicate a diversifying force
(e.g., directional selection).

Our goal in this article is to extend hypothesis testing
in ways that increase the discriminatory power of com-
parative analysis to inform us about underlying evolu-
tionary processes. In doing so, we begin with a process
model for trait evolution built from evolutionary genetics
theory that specifically includes the G matrix. Because the
G matrix includes variance terms for single traits as well
as pairwise covariance terms relating multiple traits, it is
by nature multivariate. It describes the standing crop of
genetic variation in a way that is relevant to evolution by
selection and drift in multivariate space (Lande 1979;
Lande and Arnold 1983).
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A multivariate approach should allow us to separate the
roles of various types of genetic constraints and to accept
or reject the neutral model. Furthermore, we should be
able to identify and test hypotheses that have no analogue
in univariate methods. For example, although univariate
models compare the rate of evolution on single traits with
neutral expectations, they do not test whether the overall
multivariate pattern of evolution is consistent with neutral
expectations. As Lande (1979) pointed out, neutral diver-
gence of multivariate population means should be pro-
portional to the G matrix. Although a few authors have
tested this prediction (e.g., Lofsvold 1988; Blows and Hig-
gie 2003; Bégin and Roff 2004; McGuigan et al. 2005; Hunt
2007), no multivariate methodology has been proposed
that takes account of phylogeny and that separates the
multiple hypotheses that are testable in this context.

We develop our analysis in a maximum likelihood (ML)
framework. A primary advantage of such a framework is
that it allows parameters to be estimated sequentially and
their contribution to the fit of the model to be assessed
at each step with likelihood ratio tests (Edwards 1992;
Baum and Donoghue 2001). In our approach, we use ML
to estimate parameters describing the G matrix from data
on trait means in contemporary populations with a known
phylogeny, based on a neutral model of evolution. ML
estimates of parameter values can be statistically compared
against independent direct estimates. If the data reflect the
role of selection in trait divergence, the ML estimate of
parameter values from a neutral model will likely differ
from the direct estimate. We consider G in terms of pa-
rameters describing its size, shape, and orientation. Re-
jection of the neutral model on the basis of these different
parameters leads to different conclusions about the evo-
lutionary forces responsible for the pattern of trait diver-
gence among taxa.

As a test case, we use the evolution of vertebral numbers
in garter snakes (Thamnophis spp.) to illustrate our ap-
proach. Our data are typical in the sense that they include
two trait means (body and tail vertebral counts) scored in
multiple contemporary species and populations. A phy-
logeny has been estimated for these taxa from independent
molecular data. Furthermore, G matrices have been esti-
mated for these two traits in multiple populations of garter
snakes from parent-offspring data, effective population
size has been estimated from microsatellite data, and mul-
tivariate selection has been studied in two different pop-
ulations. By comparing ML estimates of G from the pattern
of divergence based on a neutral model with direct esti-
mates of G from parent-offspring data, we infer the role
of selection in this radiation. In the course of rejecting the
neutral model, we show that stabilizing selection has been
a restraining force in the garter snake radiation. We also
show that evolution may have proceeded along a selective

line of least resistance rather than along a genetic line of
least resistance.

Theoretical Framework

Divergence under the Neutral Model

Let represent the mean value of a normally distributedz̄0

quantitative trait in a population at initial time . Ift p 0
the population evolves by random drift alone, the prob-
ability distribution of after one generation is normal,z̄
with mean and variance , where G is the additivez̄ G/N0 e

genetic variance for the trait and Ne is the effective pop-
ulation size (table 1). After t generations of random genetic
drift, the expected mean remains , and the variance isz̄0

given by

Gt
D(t) p (1)

Ne

(Lande 1976). If genetic variance fluctuates over time, the
above equation holds for , the time average of G, as aG
measure of genetic variance (Lande 1979). If Ne fluctuates
over time, the above equation holds for the harmonic
average of the effective population sizes at each generation
i,

�1

t
1

N p t # . (2)�e ( )N (i)ip1 e

Now suppose we measure a set of m normally distrib-
uted quantitative traits, such that is a column vector ofz̄
length m of population means for each trait. Genetic var-
iation for this set of traits can be represented by the G
matrix, a symmetrical m-by-m matrix with additive genetic
variance for each trait on the diagonal and additive genetic
covariances for each pair of traits off the diagonal (Lande
1979). As in the univariate case, the probability distri-
bution for the vector of population trait means after t
generations of random drift has a mean vector equal to
the mean vector at time 0, . This distribution is multi-z̄0

variate normal, with variances and covariances given by
the m-by-m matrix

Gt
D(t) p , (3)

Ne

assuming that fluctuations in G and Ne over time are un-
correlated with each other (Lande 1979). In other words,
after t generations, a set of replicate populations evolving
independently from a common ancestral population with
trait mean is expected to be a sample from a multivariatez̄0
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Figure 1: Two examples showing that the theoretical pattern of neutral
divergence is proportional to the G matrix. The axes in each plot represent
population mean values of two traits. A, Five simulated replicate pop-
ulations share a common G matrix for two traits and have evolved in-
dependently by drift from a single common ancestor with trait values at
the center of the plot. Evolution of the five populations was simulated
for 1,000 generations, with final populations shown as dots. The G matrix
(solid ellipse) is plotted as a 95% confidence ellipse. The five replicate
populations represent a sample from a predicted probability distribution
of divergence, represented by the D matrix (dashed ellipse). In this ex-
ample, , so at generations, (eq. [3]). B,N p 100 t p 1,000 D(t) p 10Ge

Identical simulation conditions as in A, except that G has a different
shape (ratio of eigenvalues), producing a different prediction for diver-
gence, D(t).

normal probability distribution with mean vector andz̄0

variance/covariance matrix D(t). This probability distri-
bution is given by the equation

′ �1¯ ¯ ¯ ¯exp [�(1/2)(z � z ) D(t) (z � z )]t 0 t 0¯P(z ) p (4)t m�(2p) D(t)F F

(Lande 1979). The matrix D(t) thus describes the expected
pattern of divergence at generation t among independently
evolving populations (Blows and Higgie 2003; fig. 1).

Schluter (1996) predicted that the leading eigenvector
of this divergence matrix D, representing the major di-
rection of change among species means, would be biased
toward the leading eigenvector, or principal component,
of the G matrix. This prediction is based on the result that
in the early stages of adaptive radiation, even in the face
of selection, populations evolving toward a single fixed
optimum do not necessarily evolve in the direction of
greatest fitness increase on the adaptive landscape (Lande
1979, 1980b). Instead, such populations evolve in a di-
rection close to the leading eigenvector of G, what Schluter
(1996) called the genetic line of least resistance, which
represents the axis of greatest genetic variation, . In ag max

purely neutral model, the major axis of divergence should
align exactly with (fig. 1). The other axes of variationg max

in G also influence the direction of evolution, however, so
that a multivariate distribution provides a more complete
prediction of the pattern of divergence. Thus, a complete
multivariate version of Schluter’s conjecture would involve
comparison of all the axes of variation of the two matrices
G and D, not just a comparison of their leading eigen-
vectors, and . One could accomplish this simplyg dmax max

by testing whether G and D are proportional to each other
(e.g., Blows and Higgie 2003). However, proportionality
of matrices reflects similarity in two respects: ratio of ei-
genvalues (which we call shape) and orientation of eigen-
vectors (Flury 1988). Different inferences result from sep-
arate comparisons of these two aspects of matrix
proportionality, hence the stepwise approach described
below.

Empirical and simulation research suggests that differ-
ent aspects of G evolve in different ways and in response
to multiple forces (Phillips et al. 2001; Steppan et al. 2002;
Jones et al. 2003, 2004, 2007). Consequently, it is useful
to reparameterize G into what can be considered size,
shape, and orientation parameters, as suggested by Jones
et al. (2003). A symmetrical m-by-m G matrix contains m
variance terms and covariance terms, repre-2(m � m)/2
senting a total of parameters. First, let l1, l2,

2(m � m)/2
and so forth, represent the eigenvalues, and let g1, g2, and
so forth, represent the corresponding eigenvectors of G.
Because G is a variance/covariance matrix, it is expected
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to be positive definite and therefore to have all positive
real eigenvalues and orthogonal eigenvectors. Each G ma-
trix can then be decomposed into a single size parameter

S p l , (5a)� i
m

a vector containing shape parameters� m � 1

l i
� p , (5b)i

S

and a vector containing orientation param-2J (m � m)/2
eters Ji. The orientation parameters describe the angles
between the eigenvectors and the trait axes, and their for-
mulas depend on m. Note that we calculate �i differently
from Jones et al. (2003) in order to facilitate estimation
procedures and handle cases in which . Because Gm 1 2
is a positive definite matrix, the size parameter S also
equals the trace of G, or the sum of the genetic variances.
In the case of a 2-by-2 G matrix, there is conveniently
only one parameter each for size, shape, and orientation.
In this two-trait case, we can represent the parameters
simply as scalars (S, �, and J), with J representing the
angle between the leading eigenvector ( ) and the axisg max

of the first trait (Jones et al. 2003). A 2-by-2 G matrix is
then parameterized as

2 2S[� cos J � (1 � �) sin J] S(2� � 1) sin J cos J
G p .2 2 S(2� � 1) sin J cos J S[� sin J � (1 � �) cos J]

(6)

G is expected to change over time by neutral genetic
drift in a population of finite size in the absence of natural
selection. If the variance lost by fixation of alleles is re-
plenished by a constant supply of new mutations, even-
tually G reaches a stable equilibrium of mutation-drift
balance (Lande 1980a; Lynch and Hill 1986). This equi-
librium is given by in diploid organisms,G p 2N Me

where M is the variance/covariance matrix of new mu-
tational variation entering the population each generation
(Lande 1979). If we assume that M remains constant over
time, perhaps as a result of the genetic architecture of loci
underlying the traits, and that G is in mutation-drift equi-
librium within each taxon, then the divergence matrix is

Gt
D(t) p p 2Mt. (7)

Ne

In practice, both G and Ne are easier to measure in natural
populations than M. If we assume mutation-drift equilib-
rium in a neutral model, however, we can estimate M based

on these other measures. We can also reparameterize M,
as we did with G. Because is related to M by a scalarG
multiple, the shape and orientation parameters and� J

of these two matrices are identical. The size parameters of
M and G are related by

SG
S p , (8)M 2Ne

where SM and SG are, respectively, the traces of M and G.

The Influence of Phylogeny

The trait divergence that we observe among contemporary
populations is a consequence of history as well as evo-
lutionary process. The divergence among a set of n taxa
can be modeled as a sample from a multivariate normal
distribution with the m-by-m variance/covariance matrix
D(t) only if the taxa have evolved independently, as on a
star phylogeny, with no covariance as a result of shared
ancestry (as in fig. 1). This assumption of independence,
however, is unrealistic in most natural situations. The ef-
fects of phylogenetic relatedness (i.e., covariance) can be
removed before analysis in various ways (Felsenstein 1985;
Schluter 1996; Diniz-Filho et al. 1998). Here we follow the
alternative approach of Martins (1995) and include phy-
logenetic information directly in the calculation of the
expected variance/covariance structure among taxa. Our
goal then is to replace the divergence matrix D(t) with a
divergence matrix that incorporates the shared history of
phylogeny. We call this phylogenetic divergence matrix A.

In the case of neutral genetic drift, the variance of the
probability distribution for the expected trait mean in a
single taxon after t generations is given by D(t) or D(t)
for single or multiple traits, respectively. Note that this
variance increases linearly with time in the neutral model
(eqq. [1], [3]). Now suppose that this single taxon splits
at time t into two daughter taxa that evolve independently
after the split. The variance of the probability distribution
for each taxon’s trait mean continues to increase linearly
after the split, but the means of these daughter taxa co-
vary as a result of shared ancestry. This trait covariance
remains constant after the split, and it is given simply by
the variance at the time of their divergence, D(t) or D(t)
(Hansen and Martins 1996). In other words, the variance
of the probability distribution predicting the trait mean
of the common ancestor lives on as the covariance between
the daughter taxa. Note that trait correlation between the
two taxa, in contrast, decreases linearly with time after
cladogenesis because the variance for each daughter taxon
continues to increase while the covariance between them
remains constant (Martins 1995; fig. 2).
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Figure 2: Covariance as a result of shared ancestry. A, Simulated evo-
lution by drift of a single trait in a phylogenetic context, with speciation
events at generation 200 and again at generation 800 (arrows). In this
example, and . B, Correlation between taxa in trait valuesG p 1 N p 100e

decays after speciation. The two axes represent the values of the trait
means in two taxa. The three pairs of trait means at generation 1,000
(dots) are a single sample from a trivariate normal probability distribution
specified by equation (9). Expected variances and covariances of this
probability distribution, calculated on the basis of the phylogeny in A
and a neutral model, are shown as 95% confidence ellipses. The expected
covariance between taxa y and z (solid ellipse) is relatively high because
the period of common ancestry is relatively long (800 generations). In
contrast, the covariance between x and y and between x and z (dashed
ellipse) is relatively low because the period of common ancestry is shorter
(200 generations). The variances of the distributions predicting each
taxon individually are identical.

Keeping in mind this linear variance/covariance struc-
ture among related taxa, we now represent a phylogeny
as a matrix of shared ancestry (Martins 1995). A phylogeny
of n taxa with branch lengths can be represented by a
symmetrical n-by-n matrix, which we shall call T. In this
matrix, each diagonal element tii is the elapsed time in
generations from the root of the tree to the extant taxon
i, and each off-diagonal element tij is the time from the
root to the most recent common ancestor of taxa i and j.
Thus, the off-diagonal elements of T represent the elapsed

time of shared ancestry for taxa i and j. Note that this
formulation of a phylogeny easily accommodates both
polytomies and unequal branch lengths. The latter point
implies several areas of flexibility in the model: the taxa
at the tips do not necessarily need to be contemporary,
the phylogeny can be estimated from molecular data with-
out assuming a molecular clock, and the conversion rate
from absolute time to generations does not need to be
equal across all branches. Now, for a single trait evolving
by drift alone, the variance/covariance of the probability
distribution of trait means at the tips of the phylogeny is
given by the n-by-n matrix

G
A p T p 2M T, (9)

Ne

assuming in the first case that fluctuations in G and Ne

are uncorrelated with each other and that their means
(arithmetic and harmonic, respectively) are equal across
all branches of the phylogeny and assuming in the second
case that populations are in mutation-drift equilibrium
with constant mutational variance M. Each ij th element
of A in equation (9) is therefore the variance term D(tij)
from equation (1).

In the case of m traits, each element of A expands into
an m-by-m block given by D(tij) from equation (3). Where

, this block gives the variance/covariance among ex-i p j
pected trait means for taxon i. Where , this blocki ( j
gives the expected covariance among taxon means, that is,
between taxon i and taxon j, for all traits (Hansen and
Martins 1996). As described above, this covariance is equal
to the variance/covariance for the most recent common
ancestor of taxa i and j. For multiple traits, therefore, the
matrix A expands into an ( )-by-( ) matrix ofm # n m # n
variance/covariance across all traits and across all taxa,
incorporating both shared ancestry and the genetic co-
variance of traits (for further explanation, see the appendix
in the online edition of the American Naturalist).

When evolution is by drift alone, the expected trait
values for each taxon are equal to the trait means at the
root of the phylogeny, . Let be a vector of lengthz̄ m0

that is an n-fold concatenation of . Thus, given¯m # n z0

a phylogeny T, ancestral trait means , and parametersz̄0

governing the drift process ( and ), the predicted prob-G Ne

ability distribution of population trait means is a multi-
variate normal distribution with mean vector and var-m

iance/covariance matrix A. Now let be a vector of lengthz

containing measured data—actual populationm # n
means for each trait in each taxon. This vector is a samplez

from this multivariate normal distribution. Thus, under
the neutral model, the probability of producing the data

is given byz



Microevolutionary Inference 000

′ �1exp [�(1/2)(z � m)A (z � m)]
P(z) p . (10)

m#n�(2p) AF F

Hypothesis Testing

ML Estimation

The foregoing specification of the outcome of evolution
as a probability distribution enables us to use ML to assess
the fit of the neutral model. Note that the specification of
A and depends on the evolutionary model and a set ofm

parameters . Consequently, the multivariate probabilityv

distribution in equation (10) can be transformed into a
likelihood framework (Edwards 1992) in which the like-
lihood of a set of parameter values is

L(v) p P(zFv) p P(zFA(v), m(v)). (11)

By taking the data as given, we now use ML techniquesz

to estimate parameter values in a given model that best
explain the data. In the neutral model described above,
these parameter values include and the size, shape, andNe

orientation parameters of the G matrix (S, �, and J, re-
spectively). By comparing parameter estimates to inde-
pendent empirical values, we can use ML to diagnose
which of these parameters is responsible for a poor fit of
the data to the statistical prediction given by equation (10).
This identification of parameters will in turn enable us to
characterize the evolutionary forces, aside from population
size and genetic constraint, that have shaped the evolution
of the traits. We have implemented the hypothesis-testing
procedure as publicly available software called MIPoD
(Hohenlohe 2007).

In general, we have two ways to estimate parameter
values that maximize the likelihood of the data. One ap-
proach is to differentiate the likelihood expression, equa-
tion (11), with respect to the parameter of interest and so
produce an analytical solution for the peak of the likeli-
hood surface. When this is not practical, we must use
numerical techniques to search for parameter values that
maximize the likelihood expression. Below we use both
techniques. As is customary, we deal mostly with the nat-
ural logarithm of the likelihood function, called log like-
lihood or , which has the same location of maxima asln L
does the untransformed equation (11).

We use differentiation to obtain a ML estimate for a
compound parameter involving the overall size of the G
matrix and effective population size. Because both S and

can be easily factored out of A, the log-likelihood func-Ne

tion is differentiable with respect to these parameters and
can be solved explicitly for the ML estimate of S /NG e

(p2SM for the mutation-drift equilibrium model). Unless
independent information about either of these parameters
is available, one cannot calculate separate ML estimates
for total genetic variance and effective population size.
This confounding of parameters is why many previous
models contain a single Brownian motion parameter that
implicitly combines total genetic variance and Ne (e.g.,
Hansen 1997; Butler and King 2004).

We also use differentiation to obtain a ML estimate of
, the expected value of population trait means evolvingm

along the observed phylogeny according to the neutral
model. The ML estimate for in the neutral model is anm

n-fold concatenation of the population trait means at the
root of the phylogeny, . Assuming that these ancestralz̄0

trait means will be unknown in most cases, we first pro-
duce an estimate for the ancestral trait means, . Thisẑ0

vector can be calculated directly by solving the set ofẑ0

m linear equations

ˆSz p c, (12a)0

where S is an m-by-m matrix with elements

n�1 n�1

�1s p A , (12b)��ij (km�i)(lm�j)
kp0 lp0

where is the pq th element of the inverse matrix�1 �1A Apq

and c is a column vector with elements

m#n n�1 �1 c p z # A . (12c)� �i l l(km�i) lp1 kp0

Note that because both S and can be factored out ofNe

A, and therefore out of as well, they can also be factored�1A
out of both sides of equation (12a). Therefore, the ML
solution for does not depend on either S or , and itm Ne

can be calculated independent of these parameters. In
other words, the ML estimate for the expected trait means
depends not on the overall rate of genetic drift but only
on the shape and orientation of G and the structure of
the phylogeny.

The solution for the shape and orientation parameters
of the G matrix, and , cannot easily be found by using� J

differentiation of the log-likelihood expression, so nu-
merical estimation techniques must be employed. Below
we use the Newton-Raphson method to find maxima on
the likelihood surface (Edwards 1992). For each parameter
estimate, one can also calculate approximate, marginal
95% confidence limits by finding the lower and higher
values representing 1.92 log-likelihood units below the
maximum while holding all other parameter values con-
stant (Edwards 1992).
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Table 2: Hypothesis-testing hierarchy

Additional ML
parameter estimate df Interpretation of significant LRT

Analogous step in Flury
hierarchy

None … Null model benchmark …
Size ( )S/Ne 1 Total amount of divergence either more or less than expected Equal vs. proportional
Shape ( )� (m � 1) Divergence biased among axes of genetic variation Proportional vs. full CPC
Orientation ( )J (m2 � m)/2 Major axes of divergence differ from axes of genetic variation Full CPC vs. unrelated

Note: At each step, an additional parameter underlying G matrix structure is estimated by maximum likelihood (ML), and the fit of the model is

compared to the previous step by a likelihood ratio test (LRT). A significant result at each step suggests a different type of deviation from the neutral

expectation. This testing procedure is somewhat analogous to the Flury hierarchy for comparing G matrices (Phillips and Arnold 1999; CPC indicates

common principal components). In cases with more than two traits, the final two levels can be expanded to test individual shape and orientation parameters.

Hypothesis-Testing Hierarchy

We now turn to a hypothesis-testing framework that uses
these ML estimates of , , and to detect and di-S /N � JG e

agnose departures from neutrality. The equations above
describe expected outcomes under a neutral model of evo-
lution or, more precisely, under a model of drift-mutation
equilibrium, which can be considered a null model. One
could simply produce a ML estimate of the complete G
matrix and compare that to an independent direct estimate
(e.g., calculated from measurements of traits on parents
and offspring). However, most data on divergence are ex-
pected to depart from the predictions of the neutral model,
so we seek to gain further insight into the kinds of roles
that selection and other factors have played in producing
those departures. We proceed stepwise in a hypothesis-
testing hierarchy through the size, shape, and orientation
parameters of G. Corresponding to each of these steps is
a particular hypothesis about the evolutionary forces that
have shaped trait divergence. Taken together, the steps in
the hierarchy provide an overall test of the neutral model.

Our stepwise hierarchical approach is similar to the
Flury hierarchy that has been used to compare multiple
estimates of G (Phillips and Arnold 1999). Our approach
differs from that of Phillips and Arnold (1999) in that we
are comparing a direct estimate of the G matrix to one
predicted from data on divergence using ML. Conse-
quently, the statistics of comparison derive from the like-
lihood surface based on the neutral model. Our approach
also differs in that our null hypothesis is an equality of
the direct and ML estimates, while Phillips and Arnold
(1999) started from a null hypothesis of G matrices with
unrelated structure.

We begin by calculating the likelihood of the indepen-
dent direct estimates of the G matrix parameters under
the neutral model. Then at each step in the testing hier-
archy, we estimate an additional parameter by ML and use
a likelihood ratio test to assess whether the additional pa-
rameter significantly improves the fit of the model to the
data. Significant results suggest specific ways in which evo-
lution has deviated from the neutral prediction, thus pro-

viding information about selection (table 2). Our hier-
archical approach allows us to test three basic hypotheses.

Size: Total Amount of Divergence

We begin by estimating the compound parameter byS/Ne

ML, keeping the other parameters of G fixed at values of
the direct estimate. We then compare the fit of the model
for the ML estimate to that of the direct estimates for G
and by using a likelihood ratio test. This comparisonNe

tests the hypothesis that the total amount of divergence
among taxa across all traits (i.e., the total amount of var-
iance among observed trait means) is consistent with the
neutral expectation (i.e., the variance predicted by a drift
model). If we have an independent estimate of , we canNe

factor it out of the combined parameter and interpret the
results in terms of total genetic variance S. If the ML
estimate of S differs significantly from the observed value,
then the total amount of divergence among taxa is either
more (if ) or less (if ) than expectedS ! S S 1 Sobs est obs est

based on a model of evolution by drift alone. If we observe
significantly more evolution than expected by drift, we can
infer that some additional force, such as diversifying se-
lection, has promoted divergence. Diversifying selection
might take the form of a selective optimum that moves
through time, for example, as ecological conditions
change. Alternatively, if we observe significantly less evo-
lution than expected by drift, we can infer that some re-
straining force, such as stabilizing selection, has impeded
divergence. This test is the multivariate analogue of a uni-
variate rate test of neutrality that uses the genetic variance
for a single trait in conjunction with estimates of diver-
gence, elapsed time, and effective population size (e.g.,
Lynch 1990; Estes and Arnold 2007).

Shape: Relative Amounts of Divergence
among Axes of Variation

At the second step, we estimate both S and the shape
parameter and compare the fit of the model to the�
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previous step by using a likelihood ratio test. This com-
parison tests the hypothesis that the relative amount of
divergence along each axis of genetic variation is consistent
with the neutral expectation after removing the effects of
the total amount of divergence. Under the neutral model,
we expect divergence in each trait to be proportional to
its genetic variance and the covariance structure of diver-
gence among traits to be proportional to genetic covari-
ance. In other words, we expect D and G to be propor-
tional so that they have the same shape. Rejecting this
hypothesis means that evolution has occurred faster along
some axes of variation, and slower along others, than ex-
pected under neutrality. Such disparity among traits could
arise if some traits or combinations of traits experience
diversifying selection while others experience stabilizing
selection or if trait combinations experience similar modes
of selection but with different intensities. Whatever the
causes of disparity among traits in the amount of evolu-
tion, disparity cannot be explained simply by differences
among traits in observed genetic variance.

Because this step of the testing hierarchy examines dif-
ferential rates of evolution among axes of genetic variation,
there is no univariate analogue to this test. Separate uni-
variate tests of neutrality on multiple traits would con-
found the total amount of evolution with the relative rates
of evolution among traits. In our multivariate approach,
the effect of the total amount of evolution has already
been removed in the first step by estimating . OneS/Ne

could correct for the total amount of evolution across all
traits and then conduct separate univariate tests of neu-
trality on the residual data. However, this approach could
still miss inferences about the role of correlational selection
because it would ignore the patterns of covariance among
traits. In our multivariate approach, we can make infer-
ences about correlational selection from the relative rates
of evolution along the axes of genetic variation, the ei-
genvectors of G.

Orientation: Direction of Divergence

In the third step, we estimate all of the G matrix parameters
to test the hypothesis that the major axes of divergence
are congruent with the major axes of genetic variation. At
this step, we ask whether the pattern of divergence and
the G matrix differ in the orientation of their eigenvectors
( ). This comparison provides a test for Schluter’s (1996)J

proposition that the major axis of divergence should be
biased toward the major axis of genetic variation. A re-
jection of the neutral model at this stage suggests either
that selection has had differential impacts on the traits that
do not conform to the orientation of genetic covariance
or that the axes of correlational selection are not aligned
with the axes of genetic variation. Because we are consid-

ering the orientation of axes in multivariate space, there
is no univariate analogue to this test. In the case of two
traits, a single scalar parameter J establishing the orien-
tation of completely describes the orientation of G.g max

The ML estimate of J is calculated from the pattern of
divergence among taxa, correcting for phylogeny under
the neutral model as described above. It describes the ori-
entation of the major axis of divergence, so it represents
a phylogenetically corrected estimate of the orientation of

. We refer to this corrected estimate of the major axisd max

of divergence as . When more than two traits are∗d max

considered, it is possible to test all parameters2(m � m)/2
Ji that determine the orientation of all eigenvectors of G.
Because of the increase in the number of parameters and
the complexity of interpretation, we will address the sit-
uation of more than two traits in more detail in a forth-
coming article. Below we consider only the two-trait case.

MIPoD can also be used to compare the orientation of
other matrices besides G to the pattern of divergence. In
particular, if estimates of multivariate selection are avail-
able in the form of approximations to quadratic or Gaus-
sian fitness surfaces ( or matrices, respectively), theirg q

orientation can be compared with that of D (Arnold et
al. 2001; Blows et al. 2004). Such a comparison is most
informative when the neutral model has already been re-
jected on the basis of orientation (i.e., when ∗d (max

). In this situation, the orientation of the direct esti-g max

mate of G does not provide an explanation for the prin-
cipal axes of population differentiation, and selection be-
comes the leading contender. Arnold et al. (2001) have
proposed that evolution may occur along a selective line
of least resistance, the leading eigenvector of ( ),q qmax

which may be visualized as a ridge on the Gaussian fitness
surface (Phillips and Arnold 1989). This selective line of
least resistance may or may not coincide with . Theg max

proposition of evolution along a selective line of least re-
sistance can be tested by comparing and . MIPoD∗q dmax max

implements such a comparison by holding the orientation
of one eigenvector constant at the direct estimate from the
adaptive landscape (which completely determines orien-
tation in the two-trait case) and fitting the remaining pa-
rameters by ML. The likelihood of this parameter set is
then compared to the best fit for all the parameter values
by using a likelihood ratio test. If this test is significant,
we can reject the hypothesis that the major axis of diver-
gence aligns with the selective line of least resistance or
that aligns with .∗d qmax max

Absence of Direct Parameter Estimates

Parameter separation in our hypothesis-testing framework
also allows us to test aspects of the neutral model in the
absence of direct estimates of parameter values. With in-
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Figure 3: A, Evolution of body (filled bars) and tail (open bars) vertebrae
in garter snakes. Phylogeny adapted from de Queiroz et al. (2002). Species
are in the genus Thamnophis unless otherwise indicated. Scale bar p

sequence divergence in mtDNA. B, Scatterplot of trait means. The2%
two taxa near the top of the plot are Thamnophis proximus and Tham-
nophis sauritus. The ellipse represents the mean G matrix from two pop-
ulations of Thamnophis elegans (Arnold and Phillips 1999) and is plotted
as a 95% confidence limit for within-population genetic variation, cen-
tered on the expected trait values for the data set (eqq. [12]).

dependent estimates of both a complete G matrix and
effective population size, we can test all hypotheses de-
scribed above. If no independent estimate of is available,Ne

one can produce a ML estimate of , evenS /N (p 2S )G Me

though one cannot test the hypothesis that total divergence
is sufficiently explained by the neutral model. Nevertheless,
the tests of shape and orientation can still be conducted
because the effects of total divergence have been removed
in the first step. Conversely, in some cases, one may have
estimates of effective population size and genetic variance
for each trait but no measures of genetic covariance among
traits. In this case, one can test the hypothesis at the first
step of the hierarchy but produce ML estimates for shape
and orientation only in the latter two steps. If no inde-
pendent estimates of any parameters are available, one
cannot reject the neutral model in any way but can still
produce ML estimates of , , and by assuming aS /N � JG e

neutral model of evolution by drift.

Test Case

Vertebral Number in Garter Snakes

Vertebral number is remarkably constant in many verte-
brate groups, apparently because deviation away from a
modal number can have profoundly deleterious conse-
quences (Galis et al. 2006). However, vertebral number in
snakes is conspicuously variable among species, with
means ranging from 100 to 300 total vertebrae. In garter
snakes (Thamnophis), numbers of body and tail vertebrae
are moderately heritable and buffered from temperature
effects during development (Arnold 1988; Dohm and Gar-
land 1993; Arnold and Phillips 1999; Arnold and Peterson
2002). Several studies indicate that selection favors an in-
termediate optimum number of vertebrae within popu-
lations of garter snakes and closely related genera (Arnold
and Bennett 1984; Arnold 1988; Lindell et al. 1993). Other
studies suggest that vertebral number differences between
populations and species represent adaptations to vegeta-
tion density such that open habitats favor phenotypes with
more vertebrae and brushy habitats favor phenotypes with
fewer vertebrae (Kelley et al. 1997; Manier et al. 2007).

Here we examine divergence in two traits (numbers of
body and tail vertebrae) in garter snakes across the genus
Thamnophis (fig. 3). We used a phylogeny adapted from
de Queiroz et al. (2002) that is based on mtDNA se-
quences. Branch lengths were converted to time in gen-
erations by using factors of 2% sequence divergence per
million years (Avise 1994) and an average generation time
of 5 years (Rossman et al. 1996). In those cases in which
we had data on vertebral counts for multiple populations
within a species, we created a new node at the midpoint
of the branch leading to that species on the original tree.
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The data are taxon means for body and tail vertebral
counts collected from a variety of sources (table A1 in the
online edition of the American Naturalist and references
in the appendix). In some cases, trait means were not
available, and so medians or range midpoints were used
as estimates of population means. Vertebral counts are
usually symmetrically distributed within populations, ei-
ther before or after a log transformation (Klauber 1941;
Kerfoot and Kluge 1971), so such substitute estimates of
the mean are reasonably reliable. Because males and fe-
males differ in vertebral number, we consider trait means
and genetic variance/covariance for only females in all the
analyses that follow.

We use an estimate of the G matrix for body and tail
vertebral counts that represents the mean of estimates from
two populations of Thamnophis elegans (Arnold and Phil-
lips 1999; fig. 3B). To visualize a G matrix on the scale of
trait values, we plot it as an ellipse with axes scaled to 1.96
times the square root of the corresponding eigenvalue; in
other words, the ellipse represents a 95% confidence ellipse
around the within-taxon genetic variation. The long axis
of the ellipse represents , the leading eigenvector ofg max

G. Additional direct estimates of G are taken individually
from these two populations of T. elegans (coastal and in-
land, respectively; Arnold and Phillips 1999) and from a
single population of Thamnophis sirtalis (Dohm and Gar-
land 1993).

Manier and Arnold (2005) estimated effective popula-
tion sizes within T. elegans from microsatellite data. Their
estimates were for subpopulations within an island model
metapopulation, whereas the analyses presented here con-
sider populations with varying degrees of internal structure
as single taxa. The standard island model predicts that
effective population size is increased by population sub-
division (Whitlock and Barton 1997). However, relaxing
some of the assumptions of this model, such as equal deme
size or equal reproductive output among demes, results
in the observation that subdivision may often decrease
rather than increase effective population size compared to
census population (Whitlock and Barton 1997). This effect
may be quite pronounced in some situations (e.g., Turner
et al. 2006). Because the details of metapopulation dy-
namics in these taxa may vary (Paquin et al. 2006) and
because the harmonic mean is weighted toward lower val-
ues, we use an estimate of based on the rangeN p 500e

of values reported by Manier and Arnold (2005).
We do not have direct estimates of the selection sur-

face based on overall fitness as a function of vertebral
number for these taxa. However, two studies provide
estimates of potential fitness components as a function
of body and tail vertebral counts. Both studies used the
method of Lande and Arnold (1983) to estimate coef-
ficients of linear and nonlinear selection (b and g) that

describe a quadratic approximation to an individual se-
lection surface. Arnold (1988) modeled the effects of
body and tail vertebral numbers on growth rate in nat-
ural populations of female T. elegans ( ) by usingn p 69
a quadratic regression in which the vertebral numbers
were standardized to unit variances. On the raw scale
(i.e., without standardization to unit variances), the re-
gression equation is relative growth (mean of one) p

,2 2�8.302 � b z � b z � (1/2)g z � (1/2)g z � g z z1 1 2 2 11 1 22 2 12 1 2

where z1 is body and z2 is tail. The elements of the matrixg

are ( , ),g p �0.040 SE p 0.012 P p .03 g p �0.19111 22

( , ), and ( ,SE p 0.007 P p .01 g p 0.088 SE p 0.06812

). The estimated values for bi were not significantlyP p .01
different from 0 ( ). Therefore, the negative inverseP 1 .05
of approximates (Lande 1979), with ,g q q p �1,836.511

, and . The orientation ofq p �384.6 q p �846.222 12

is given by . A selection surface is alsoq J p 0.4299max

available for crawling speed in neonatal Thamnophis radix
( ) as a function of body and tail vertebral countsn p 143
(Arnold and Bennett 1988). That surface, however, was
reported on log scales for both traits. We recomputed
the surface by using the raw data and obtained relative
burst speed (mean of one) p 1.004 � b z � b z �1 1 2 2

, with the following ma-2 2(1/2)g z � (1/2)g z � g z z g11 1 22 2 12 1 2

trix: ( , ),g p �0.002 SE p 0.007 P 1 .05 g p �0.00111 22

( , ), and ( ,SE p 0.010 P 1 .05 g p 0.008 SE p 0.00312

). Again, the estimates for bi were not signifi-P p .003
cantly different from 0 ( ), so that ,P 1 .05 q p �16.1311

, and . The orientation ofq p �32.26 q p �129.022 12

is given by .q J p 0.817max

Results

We used a hierarchical hypothesis-testing approach to as-
sess the ability of a neutral drift model to explain the
pattern of evolutionary divergence among Thamnophis
taxa. In the first step of the hierarchy, the total genetic
variance and effective population size, represented by the
quotient , determine the total dispersion of popula-S/Ne

tion means for the two traits in a drift model. The ML
estimate for this parameter combination that best explains
the data differs significantly from empirical data (fig. 4).
Estimating assuming a drift model yields combina-S/Ne

tions in which genetic variance is far too small or effective
population size is far too large. When we fix , aN p 500e

much smaller total genetic variance better explains the data
than does the direct estimate of G ( ; fig. 5A; tableP ! .0001
A2 in the online edition of the American Naturalist). In
other words, divergence in vertebral number is far less
than expected under neutrality, suggesting that stabilizing
selection—or some other restraining force—has impeded
evolution. At the next step, the ML estimate for shape (�)
also better explains the data than does the direct estimate
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Figure 4: Maximum likelihood estimate (solid line) and 95% confidence
limits (dashed lines) of the parameter combining total genetic variance
(S) and effective population size (Ne), keeping shape and orientation of
G fixed at the direct estimates for Thamnophis elegans (Arnold and Phil-
lips 1999). The point estimate (cross) represents estimates in T. elegans
for S from Arnold and Phillips (1999) and for Ne from Manier and
Arnold (2005; error bars represent range of values for each parameter).
The model fit is significantly better for the estimated combined parameter
(likelihood ratio test; ).P ! .0001

of G ( ). The ML estimate for � is larger than theP p .012
direct estimate, meaning a longer and narrower G matrix
ellipse (fig. 5B). Divergence is biased along the axis of
positive covariance between the two traits relative to the
neutral prediction. In other words, we can reject the hy-
pothesis that differences among traits in divergence are
consistent with differences in genetic variances. At the
third step of the hierarchy, adding the parameter estimate
for orientation (J) significantly improves the fit of the
model ( ). Thus, we can reject the hypothesis thatP p .001
divergence occurs predominantly along the genetic line of
least resistance, . The estimate for J is lower than theg max

empirical value (fig. 5C), indicating that the primary axis
of divergence lies closer to the axis of body vertebral count
than does .g max

To assess the impact of the direct estimate of the G
matrix on these conclusions, we repeated the above anal-
yses by using the estimates of G for body and tail vertebral
counts from the two separate T. elegans populations
(coastal and inland; Arnold and Phillips 1999) and from
a population of T. sirtalis (Dohm and Garland 1993; table
A2). At the first level of the hierarchy, the same result as
above was obtained for all direct estimates of size (S) of
G. In all cases, the direct estimate of S was significantly
larger than the ML estimate ( for all), suggestingP ! .0001
the presence of some restraining force, such as stabilizing
selection, that has impeded divergence. At the second level
of the hierarchy, the results conflicted with those for the

average of the T. elegans populations. The ML estimate for
shape did not significantly improve the fit of the model
over the direct estimate for either of the individual T.
elegans populations (coastal: ; inland: ).P p .248 P p .125
In contrast, the ML estimate for shape differed significantly
from the direct estimate from T. sirtalis ( ), butP p .0102
it was smaller than the direct estimate rather than larger,
as for T. elegans. In other words, the ML estimate from
the divergence data produces a G matrix that is longer
and narrower than the direct estimate from T. elegans but
shorter and fatter than the direct estimate from T. sirtalis,
when orientation is held constant at the direct estimate.
Thus, the ML estimate lies within the range of variation
of � observed for these traits among Thamnophis taxa.
Finally, at the third level of the hierarchy, the results were
again consistent. The ML estimate for G matrix orientation
was significantly smaller than the direct estimate from ei-
ther of the two T. elegans populations (coastal: ;P ! .0001
inland: ) and the direct estimate from T. sirtalisP p .0009
( ). For all of these direct estimates of G, we canP ! .0001
reject the hypothesis that divergence occurs predominantly
along , as predicted by a drift model, and insteadg max

conclude that divergence has occurred in a direction closer
to the axis of body vertebral count. Interestingly, when the
orientation is shifted to the ML estimate, the ML estimate
for the shape parameter becomes larger than all the direct
estimates of �. In other words, the pattern of divergence
is more closely aligned with relative to the second∗d max

major axis of divergence, compared with the prediction
from the neutral model based on any direct estimate of
G. This suggests that selection has constrained divergence
to a narrower band along than would be predicted∗d max

from the neutral model.
We also conducted the hypothesis-testing hierarchy on

the average phenotypic variance-covariance matrix P, es-
timated from the two T. elegans populations (Arnold and
Phillips 1999). The results were similar to the results for
the corresponding G matrix (table A2), with significant
results for size ( ), shape ( ), and ori-P ! .0001 P p .0028
entation ( ).P p .0015

Two species, Thamnophis proximus and Thamnophis
sauritus, have more tail vertebrae in relation to body ver-
tebrae than do other garter snakes, perhaps reflecting ad-
aptation to arboreality (fig. 3). These two species of garter
snakes are more consistently found off the ground than
are other species in the genus (Rossman et al. 1996). We
assessed whether these taxa could be responsible for the
rejection of the neutral model. Keeping effective popula-
tion size fixed as above, we estimated all three parameters
of the G matrix both for the full data set and for the data
set with these two taxa removed (table A3 in the online
edition of the American Naturalist). These two estimates
of G did not differ significantly in their ability to explain
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Figure 5: Visualization of stepwise hypothesis testing in the garter snake test case, starting from the mean G matrix for Thamnophis elegans from
Arnold and Phillips (1999; see table A2 in the online edition of the American Naturalist). A, The maximum likelihood (ML) estimate for size (S;
solid red ellipse; scaled to ) with 95% confidence limits (dashed red ellipses), compared with the direct estimate of the G matrix (blackN p 500e

ellipse). B, The ML estimate for shape (�; blue ellipse) compared with the ML estimate from A (dashed red ellipse). Note the change in scale from
A. C, The ML estimate for orientation (J; green ellipse) compared with the estimate from B (dashed blue ellipse). D, Estimates of the orientation of

from growth rate in T. elegans (black line) and crawling speed in Thamnophis radix (red line) plotted with the direct estimate of (dashedq gmax max

blue line) and (dashed green line).∗dmax

the pattern of divergence in the full data set (likelihood
ratio test; ).P p .2804

Having rejected the hypothesis that population differ-
entiation has occurred along a genetic line of least resis-
tance, we ask whether might align with a selective∗d max

line of least resistance. Using estimates of from twoqmax

studies of potential fitness components in garter snakes,
we found conflicting results (fig. 5D ; table A3). In the case
of the growth rate surface for T. elegans, the fit of the

neutral model does not differ significantly when the ori-
entation (J) is constrained to ( ). We cannotq P p .2638max

reject the hypothesis that evolution has occurred along a
selective line of least resistance corresponding to growth
rate in this species, and, indeed, those two vectors are
closely aligned (fig. 5D). However, the ML estimate does
differ significantly from the orientation of from theqmax

T. radix crawling speed surface ( ). Thus, we canP p .0003
reject the hypothesis that divergence aligns with a selective
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line of least resistance based on crawling speed. Note, too,
that the crawling speed estimate of is closely alignedqmax

with the orientation of the direct estimate of (fig. 5D).g max

This correspondence may be a coincidence, or it may re-
flect evolutionary alignment of G with a persistent adaptive
landscape, as predicted by simulation studies (Jones et al.
2007).

Discussion

Methodological Considerations

We have presented a statistical framework for inferring
aspects of microevolutionary process from the phyloge-
netic pattern of trait divergence among taxa by using a
neutral model of evolution. Consequently, errors can enter
the framework in three places: in the data, in the model,
or in the phylogeny. We consider these sources of error
in turn. With respect to the data, the prediction of change
in trait means over time is based on an assumption that
the distribution of additive genetic variation within pop-
ulations is multivariate normal (Lande 1976). Nonnormal
distributions of trait values can often be transformed or
rescaled to normality, and the analysis can then be per-
formed on the transformed trait values (Lande 1976). The
possibility that misleading results can be caused by only
a few taxa should also be considered. Extreme values can
disproportionately influence the slope of regressions
(Dunn and Clarke 1987), and so they may especially in-
fluence the results of the orientation test in the last step
of our testing hierarchy. One simple expedient is to de-
termine whether the neutral model is still rejected after
removing particular taxa from the data set, especially in
cases where selection is known or suspected to have acted
on those few taxa. In the garter snake test case, deletion
of two species with exceptional ecology did not affect the
conclusions (table A3). Care should be taken in interpre-
tation, however, because statistical power to reject the neu-
tral model may be reduced in tests of a smaller data set.

Errors arising from the neutral model enter via its cen-
tral parameters, Ne and G. The most straightforward way
of dealing with the effects of Ne on the conclusions is to
use values that bound the probable range. The likelihood
framework of MIPoD also produces confidence intervals
for the compound parameter that can be comparedN /Se

to the range of direct estimates (fig. 4). In the absence of
a direct estimate, one can determine how small or large a
value of Ne would have to be invoked to account for the
data with a neutral model. A wildly unrealistic value for
the organisms considered can provide grounds for reject-
ing the model. The neutral model also assumes that Ne

(the harmonic average of effective population size across
generations) is equal across all branches of the phylogeny.

If this assumption is known to be violated, a correction
can be applied to the phylogeny before analysis. The pa-
rameters and t can be easily factored out of the predictedNe

variance structure for a single population (eq. [3]) and
thus factored out of each block of the phylogenetic di-
vergence matrix A. Therefore, estimated differences among
lineages in can be incorporated by rescaling the ap-Ne

propriate parts of the shared ancestry matrix T. Likewise,
even though direct estimates of the G matrix always come
with error, is treated as equal across branches in theG
model. Again, bracketing the probable values of G and
using the likelihood framework to calculate confidence
limits for G matrix parameters may be the best way to
assess the impact of this assumption on the conclusions.
If only a single direct estimate of G is available, one could
compute confidence limits for elements (e.g., based on
bootstrap resampling of parent-offspring data) and use
those to assemble extreme estimates of G. A better ap-
proach, when multiple estimates are available, is to use
those separate estimates to assess the impact on conclu-
sions. Using this latter approach in the garter snake test
case, we found that our conclusions about size and ori-
entation were robust across the range of direct estimates
of G, while the ML estimate of the shape parameter lay
within the range of direct estimates when the orientation
parameter was held constant.

Two perspectives on the evolutionary stability of the G
matrix provide contrasting views on treating G as a con-
stant over evolutionary time, a proposition first suggested
by Lande (1975, 1979, 1980a). According to one perspec-
tive, G may fluctuate erratically through time, reflecting
change in underlying gene frequencies (Turelli 1988; Shaw
et al. 1995; Roff 2000) or in genes of major effect (Agrawal
et al. 2001). Erratic fluctuation in G may occur especially
in small populations and for traits that experience little or
no stabilizing and correlational selection (Phillips et al.
2001; Whitlock et al. 2002). In such cases, using a single
estimate of G, or even the average of a few estimates, in
an application such as MIPoD is inadvisable because the
real G is a complex time series. A second view, based on
comparative studies and computer simulations, suggests
conditions under which the assumption of G matrix sta-
bility may be satisfied. Comparisons of G matrices sampled
from conspecific populations and related species often
show that the matrices have one or more principal com-
ponents in common or are even proportional (Arnold and
Phillips 1999; Steppan et al. 2002). Computer simulations
suggest that G matrix stability is promoted by large effec-
tive population size and mutational correlation (Jones et
al. 2003). Persistent stabilizing (and correlational) selec-
tion may also produce stability in G by promoting align-
ment of G with the major axes of the adaptive landscape
(Jones et al. 2003, 2004, 2007). A corollary expectation
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from this result, however, is that adaptive landscapes that
have diverged in configuration may promote divergence
of G among independently evolving populations.

A second cause for optimism in the use of a constant
G is that even some types of fluctuations in G do not
violate the assumptions required in this analysis. For ex-
ample, if G is drawn independently each generation from
a distribution that itself remains constant across the phy-
logeny, the mean of that distribution, , provides the cor-G
rect estimate of a constant G in the neutral model. More-
over, the strict assumption required here is only that beG
equal across all branches of the phylogeny, so that even
some short-term temporal autocorrelation of G may not
substantially violate this assumption. Again, if fluctuations
in G are the result of sampling from a distribution that
itself remains constant, the assumption may be satisfied
or nearly so. This underlying distribution could be con-
sidered to represent the genetic architecture of the traits,
which shapes the M matrix of mutational variation and
hence G.

Ultimately, the constancy of G over evolutionary time
is an empirical question meriting further study. The ad-
visability of using a constant estimate of in MIPoDG
depends on issues that can be addressed directly by G
matrix comparisons or indirectly by information about
population size and modes of selection. The utility of
MIPoD probably declines at larger taxonomic scales. As
fundamental changes in the adaptive landscapes and ge-
netic architecture of traits become more likely, the as-
sumption of a constant becomes untenable. In inter-G
preting the results of the analysis, it is worth remembering
that rejection of the neutral model can result from vio-
lations of the assumptions (e.g., constancy of ), as wellG
as nonneutral evolution, and that nonneutral evolution
itself may cause shifts in G. These should be considered
as alternative interpretations of significant results.

In the absence of a direct estimate of G, one can consider
using surrogates for the G matrix. The obvious candidate
is the phenotypic variance-covariance matrix P. Willis et
al. (1991) have described the perils of substituting P for
G in equations that predict responses to selection. In the
present context, however, parameter separation in our
hypothesis-testing hierarchy creates a less demanding role
for the P matrix. MIPoD tests whether the magnitude and
pattern of population divergence are consistent with a tem-
porally magnified version of the G matrix. To substitute
P for G in this case, we must be prepared to argue that
the two matrices are similar, for example, that they might
be proportional (Cheverud 1988; Ackerman and Cheverud
2002). Proportional matrices share shape and orientation
parameters but not size parameters. Such an argument
will clearly be untenable in some circumstances. If, for
example, some traits are more prone to environmental

influence than are others, P will be larger than G in those
trait dimensions, and the two matrices will not be pro-
portional. In the garter snake test case, we had direct es-
timates of both matrices for a set of six scalation traits. P
and G were indeed proportional (Arnold and Phillips
1999), perhaps because all of the traits were of a similar
kind, with comparable buffering against environmental ef-
fects (Arnold and Peterson 2002). Not surprisingly, when
we repeated the test case using the average P matrix for
body and tail vertebral count in the two Thamnophis ele-
gans populations (comparable to the G matrix shown in
figs. 3 and 5), we obtained the same qualitative test results
at all levels of the hierarchy (table A2). In this case, P may
serve as a proxy for G because the two matrices are
proportional.

The Kluge-Kerfoot phenomenon provides another ra-
tionale for evaluating divergence with MIPoD using P ma-
trices. Kluge and Kerfoot (1973) argued that differences
among traits in among-taxa divergence correlate with dif-
ferences in within-population phenotypic variation. Un-
like predictions of divergence based on G, however, this
conjecture is more a description of pattern than a rigorous
model of evolutionary process. Furthermore, objections to
Kluge and Kerfoot’s testing procedures have been raised
on a variety of statistical grounds (Sokal 1976; Rohlf et al.
1983). These objections can be circumvented by careful
preliminary analysis of data, as suggested by Rohlf et al.
(1983), and testing of the conjecture in MIPoD. As in the
garter snake test case, a pooled or average estimate of P
can be used to characterize phenotypic variation and co-
variation within populations. The Kluge-Kerfoot phenom-
enon predicts proportionality between P and D. The tests
of shape and orientation in MIPoD together provide phy-
logenetically corrected tests of proportionality. The test of
the size parameter is less relevant because it reflects the
overall rate of evolution and is thus tied more directly to
the process model of neutral genetic drift based on G
rather than P.

Errors in the branch lengths or topology of the phy-
logenetic trees may also affect conclusions. Branch lengths
enter the testing procedure after being calibrated to ab-
solute time in generations. Consequently, sensitivity of re-
sults can be assessed using alternative calibrations. In the
garter snake test case, we found that neutrality was so
resoundingly rejected at the first testing step that calibra-
tion of branch lengths could be varied by a factor of up
to 36 without affecting the conclusion. One could also test
the effect of different generation times among lineages by
constructing alternative matrices of shared ancestry T.
Sensitivity to alternative topologies could be addressed in
a similar fashion. Alternative topologies might be derived
from molecular data partitions or alternative kinds of char-
acters, alternative procedures for tree inference, or rivals
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under a particular criterion for tree evaluation. In any of
these cases, alternative trees can be analyzed so that effects
on conclusions can be assessed. In the garter snake test
case, tree alternatives were not available to perform this
kind of assessment.

Implicit in the testing hierarchy of MIPoD is a test of
phylogenetic signal. The neutral model of drift, as a
Brownian motion process, predicts a linear increase in
variance over time and thus the linear relationship between
shared ancestry and covariance described above. In con-
trast, various forms of selection cause a decay in covariance
between independently evolving taxa after speciation and
thus a decay of phylogenetic signal (Hansen and Martins
1996). If a data set lacks phylogenetic signal (i.e., the linear
relationship between divergence and time predicted by the
neutral model), MIPoD will likely reject the neutral model
at one or more steps in the hierarchy. However, MIPoD
may still reject the neutral model even in the face of phy-
logenetic signal. For instance, consider a situation in which
taxa evolve toward selective optima that themselves move
independently by Brownian motion (Felsenstein 1985; Es-
tes and Arnold 2007). In this case, phylogenetic signal
might be preserved, but MIPoD would likely reject the
neutral model, unless the movement of optima happened
to be similar to the neutral model in two further respects.
First, the rate of movement of optima would have to be
similar to the neutral rate of drift predicted from total
genetic variation and effective population size. Second, the
variance/covariance pattern of Brownian motion of optima
would have to be proportional (in terms of shape and
orientation) to the G matrix.

Interpretation of Results

The framework we have presented identifies a set of spe-
cific hypotheses about microevolutionary process that can
be tested in a hierarchical fashion in terms of the G matrix.
At the first step in the hierarchy (table 2), we test the
neutral model in terms of the total amount of divergence
among taxa. In the garter snake example, we rejected this
aspect of the neutral model, given direct estimates of G
and effective population size. Much less divergence among
taxa was observed than was predicted under drift. This
step is analogous to a univariate rate test of trait evolution
(e.g., Lande 1977; Turelli et al. 1988; Lynch 1990). When
parameterized with reasonable values for the drift process
(effective population size and genetic variance), the uni-
variate neutral prediction of divergence over time typically
fails to explain observed data (Lynch 1990; Estes and Ar-
nold 2007). Underprediction on short timescales suggests
that diversifying selection has produced departures from
neutrality. This result is common in studies of divergence

among local populations, for example, when assessed by
FST-QST comparisons (Merilä and Crnokrak 2001; McKay
and Latta 2002). On such short timescales, adaptation to
spatially varying selection is often rapid, so that phenotypic
divergence exceeds neutral rates. On longer timescales,
however, the situation is often reversed. Here the failure
of the neutral model reflects the neutral prediction that
trait variance among replicate populations will increase
linearly with time. In actual evolving lineages, however,
divergence is rarely so extensive (Estes and Arnold 2007).
Consequently, when we consider radiations of related spe-
cies and genera, we find divergence to be less than expected
under neutrality, as in the garter snake test case.

Such a result suggests factors that could restrain diver-
gence and diversification. In many situations, stabilizing
selection toward an intermediate optimum with restrained
movement is undoubtedly the leading candidate (Hansen
1997; Estes and Arnold 2007). Other nonselective possi-
bilities should be explored, however. Migration and hy-
bridization, for example, can compromise the effects of
diversifying selection and so might yield rates less than
expected under neutrality with the assumption of inde-
pendently evolving populations. Alternatively, we might
hypothesize that genetic constraints limit trait divergence
among taxa. The G matrix itself represents genetic con-
straint by describing the amount and multivariate struc-
ture of genetic variation available to evolution. Because
the neutral model incorporates the G matrix in its pre-
dictions, however, to attribute failure of the neutral model
to some form of genetic constraint requires some addi-
tional assumptions about process. A systematic reduction
in genetic variation as divergence proceeds might produce
such a limit to divergence. However, such a reduction is
not supported by empirical evidence from artificial selec-
tion experiments, in which selection is typically much
stronger than in nature (Hill and Caballero 1992). This
hypothesis of diminished genetic variation could also be
tested by gathering direct estimates of G from populations
or taxa at the extremes of trait values in a radiation. If
these estimates of G show a reduction in variation, par-
ticularly along axes that correspond to reduced levels of
among-taxa divergence, this hypothesis could be sup-
ported.

The next two steps in our hypothesis-testing framework
have no direct analogy in univariate evolution. Further-
more, they are independent of the overall rate of evolution,
which was accounted for in the first step. Together, they
constitute a test of proportionality between G and the
divergence matrix, D. The shape test at the second step
can identify combinations of traits that are evolving faster
or slower than neutral expectations. Note that even if the
rate test at the first step revealed an overall rate slower
than expected under neutrality, some traits may never-
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theless have evolved at a faster than neutral rate. Such
disparities among traits can have multiple causes. Al-
though stabilizing selection is a leading candidate cause of
slower rates (Estes and Arnold 2007), in some cases other
factors such as hybridization or selection limits may be at
play. Likewise, rates that are accelerated relative to neu-
trality imply diversifying selection, but many varieties are
possible. An adaptive peak may be prone to move in the
trait direction that is exaggerated relative to neutral ex-
pectations. Alternatively, that trait direction might be pop-
ulated by multiple peaks, with populations shifting among
them. The overall significance of the shape test is that it
may reveal differences among traits in selection mode and
intensity.

The focus at the third step is on the direction rather
than the amount (or rate) of evolution. An important
prediction of the neutral model is that inheritance and
population divergence will have identical axes of variation.
In other words, the G and D matrices will have common
principal components (i.e., identical eigenvectors). We
learn more by rejecting this hypothesis than by failing to
reject it. Coincidence of and , and so on for the∗g dmax max

other eigenvectors of the two matrices, is consistent with
neutrality. It also may be consistent with an early stage in
adaptive radiation in which populations are far from an
adaptive peak and evolving in response to selection in a
direction that is biased by the G matrix, as argued by
Schluter (1996). When the eigenvectors of G and D are
aligned, other explanations are possible as well. For some
kinds of traits, design limits and other kinds of selective
constraints may produce ridges in the adaptive landscape
and also predispose the adaptive peak to move in the
direction of the landscape’s leading eigenvector. We call
this direction the selective line of least resistance, by anal-
ogy with (Arnold et al. 2001). A persistent stabilizingg max

landscape of this kind can promote coincidence of g max

with its leading eigenvector (Jones et al. 2007) as well as
coincidence of these two with . In other words, co-∗d max

incidence of and is consistent with a variety of∗g dmax max

scenarios, neutral and otherwise. In contrast, if we reject
the hypothesis of common eigenvectors for G and D, we
can certainly conclude that neutral evolution is not re-
sponsible for the direction of population diversification.

When G and D do not share common eigenvectors, as
in the garter snake test case, we can ask whether the ori-
entation of the adaptive landscape helps account for the
axes of variation in divergence (i.e., the eigenvectors of
D). To test this hypothesis, we need estimates of the in-
dividual selection surface, which in turn can be used to
approximate the adaptive landscape. In particular, if sta-
bilizing selection is weak, then the coefficients that describe
the curvature and orientation of the individual selection
surface also provide a reasonable approximation of the

adaptive landscape (Lande and Arnold 1983; Phillips and
Arnold 1989). Both of the approximated surfaces for garter
snake data show weak curvature (i.e., small values in org

large values in ) and so support this assumption. Inq

neither case, however, do the surfaces represent lifetime
fitness as a function of the two vertebral counts. The two
measures, crawling speed and growth rate, likely represent
components of fitness but perhaps not major components.
Nevertheless, the result that one of these two surfaces has
an orientation that coincides with the principal axis of
population divergence, in contrast with any direct esti-
mates of G, suggests that the adaptive landscape may share
some orientation with D. This possibility needs to be tested
with additional selection studies. In the meantime, at least
two interpretations are consistent with the shared orien-
tation that we observed. First, all populations reside on
the same adaptive landscape, with a dispersion of popu-
lation means that represents a balance between drift and
stabilizing selection (Lande 1976). Second, individual pop-
ulations reside at or near private adaptive peaks, according
to the balance of forces just described, but over evolu-
tionary time, the peaks tend to move along a selective line
of least resistance. Under this second interpretation, in the
garter snake test case, this line was approximated by the
estimate of from the T. elegans growth rate data.qmax

Prospects

While G has been a player in comparative studies, its role
has been surprisingly small. Nonetheless, G has been used
in diverse applications that include (1) description and
comparison of genetic constraints (e.g., Arnold 1992;
Cheverud 1995; Steppan et al. 2002), (2) assessing the
consequences of alternative schemes of directional selec-
tion (e.g., Cheverud et al. 1983), (3) retrospective analysis
of selection using divergence data (Lande 1979; Price et
al. 1984; Schluter 1984; Arnold 1988; Dudley 1996; Reznick
et al. 1997; Jones et al. 2004), (4) estimation of generalized
genetic distance (Lande 1979; Schluter 1984), (5) testing
for evolution along genetic lines of least resistance (Schlu-
ter 1996), and (6) testing for proportionality between G
and matrices of population divergence (Lofsvold 1988;
Blows and Higgie 2003; Bégin and Roff 2004; McGuigan
et al. 2005). Despite these applications, G has not been
used in a variety of other circumstances in which it is
likely to supply critical information. For example, so far
as we know, G has not been used to (1) weight characters
in the inference of phylogenetic trees (but see Schaffer
1986), (2) model trait evolution on phylogenies, or (3)
reconstruct ancestral character states. In some cases in
which G might be used, it figures in the formulation of
methodology but plays no role in actual tests (Martins and
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Hansen 1996, 1997). In other cases, G plays a cryptic role,
hidden within a compound parameter that is used to rep-
resent the combined effects of finite population size, ge-
netic constraints, and stabilizing selection (Hansen 1997;
Butler and King 2004). Parameterizations that separate
these diverse contributions have multiple advantages. By
using models with explicit, separate terms for inheritance,
selection, and population size, one can determine whether
each of these factors takes realistic values (Estes and Arnold
2007). In addition, by using such an approach in MIPoD,
one can directly incorporate information about population
size and genetic constraints into the analysis of divergence
data.

Looking to the future, we can ask what could be gained
by using the G matrix in the methodologies of comparative
study. A grand hope is that we might be able to deduce
the modes and patterns of selection that drive adaptive
radiations. By using the G matrix in our comparative
methods, we should be able to separate the effects of ge-
netic constraint from those of selection. The most powerful
format for accomplishing this separation is the family of
stochastic models developed by Lande and associates to
describe population differentiation during neutral or adap-
tive radiations (Lande 1976, 1985, 1986; Hansen and Mar-
tins 1996; Lande and Shannon 1996). The neutral model
that we have used in MIPoD is the simplest basal member
of the family. Models that incorporate selection are usually
cast in terms of an adaptive landscape with a peak that is
stationary or that moves in any of a variety of ways. A
generalization emerging from the models that have been
developed so far is that the G matrix affects differentiation
during the early stages of a radiation, but its influence
decays through time exponentially (Hansen and Martins
1996; Schluter 1996; Estes and Arnold 2007). Exceptions
are found in certain kinds of landscapes, namely, those in
which the peak moves systematically, for example, in a
progressive fashion (e.g., Lynch and Lande 1995; Jones et
al. 2004). If the peak moves randomly (e.g., as in Brownian
or white noise motion), so that there is no change in
average position over time, the influence of G decays over
time (Hansen and Martins 1996). Thus, the separation
that we hope for in resolving the roles of constraint and
selection occurs naturally in some kinds of adaptive land-
scape models, assuming that we do our analysis on the
right timescale. In situations in which the movement of
adaptive peaks includes a systematic component, we will
need to use G to fully characterize the role of selection.
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Bégin, M., and D. A. Roff. 2004. From micro- to macroevolution
through quantitative genetic variation: positive evidence from field
crickets. Evolution 58:2287–2304.

Blows, M. W. 2007. A tale of two matrices: multivariate approaches
in evolutionary biology. Journal of Evolutionary Biology 20:1–8.

Blows, M. W., and M. Higgie. 2003. Genetic constraints on the evo-
lution of mate recognition under natural selection. American Nat-
uralist 161:240–253.

Blows, M. W., S. F. Chenoweth, and E. Hine. 2004. Orientation of
the genetic variance-covariance matrix and the fitness surface for
multiple male sexually selected traits. American Naturalist 163:
329–340.

Butler, M. A., and A. A. King. 2004. Phylogenetic comparative anal-
ysis: a modeling approach for adaptive evolution. American Nat-
uralist 164:683–695.

Carvalho, P., J. A. F. Diniz-Filho, and L. M. Bini. 2005. The impact
of Felsenstein’s “Phylogenies and the comparative method” on
evolutionary biology. Scientometrics 62:53–66.



Microevolutionary Inference 000

Charlesworth, B. 1984. The cost of phenotypic evolution. Paleo-
biology 10:319–327.

Cheverud, J. 1988. A comparison of phenotypic and genetic corre-
lations. American Naturalist 42:958–968.

———. 1995. Morphological integration in the saddle-back tamarin
(Saguinus fuscicollis) cranium. American Naturalist 145:63–89.

Cheverud, J., J. J. Rutledge, and W. R. Atchley. 1983. Quantitative
genetics of development: genetic correlations among age-specific
trait values and the evolution of ontogeny. Evolution 37:895–905.

Darst, C. R., P. A. Menendez-Guerrero, L. A. Coloma, and D. C.
Cannatella. 2005. Evolution of dietary specialization and chemical
defense in poison frogs (Dendrobatidae): a comparative analysis.
American Naturalist 165:56–69.

de Queiroz, A., R. Lawson, and J. A. Lemos-Espinal. 2002. Phylo-
genetic relationships of North American garter snakes (Thamno-
phis) based on four mitochondrial genes: how much DNA se-
quence is enough? Molecular Phylogenetics and Evolution 22:315–
329.

Diniz-Filho, J. A. F., C. E. R. De Sant’ana, and L. M. Bini. 1998. An
eigenvector method for estimating phylogenetic inertia. Evolution
52:1247–1262.

Dohm, M. R., and T. J. Garland Jr. 1993. Quantitative genetics of
scale counts in the garter snake Thamnophis sirtalis. Copeia 1993:
987–1002.

Dudley, S. A. 1996. The response to differing selection on plant
physiological traits: evidence for local adaptation. Evolution 50:
103–110.

Dunn, O. J., and V. A. Clarke. 1987. Applied statistics: analysis of
variance and regression. Wiley, New York.

Edwards, A. W. F. 1992. Likelihood. Johns Hopkins University Press,
Baltimore.

Estes, S., and S. J. Arnold. 2007. Resolving the paradox of stasis:
models with stabilizing selection explain evolutionary divergence
on all timescales. American Naturalist 169:227–244.

Felsenstein, J. 1985. Phylogenies and the comparative method. Amer-
ican Naturalist 125:1–15.

Flury, B. D. 1988. Common principal components and related mul-
tivariate models. Wiley, New York.

Galis, F., T. J. M. van Dooren, J. D. Feuth, J. A. J. Metz, A. Witkam,
S. Ruinard, M. J. Steinenga, and L. C. D. Wijnaendts. 2006. Ex-
treme selection in humans against homeotic transformations of
cervical vertebrae. Evolution 60:2643–2654.

Hansen, T. F. 1997. Stabilizing selection and the comparative analysis
of adaptation. Evolution 51:1341–1351.

Hansen, T. F., and D. Houle. 2004. Evolvability, stabilizing selection,
and the problem of stasis. Pages 130–150 in M. Pigliucci and K.
Preston, eds. Phenotypic integration. Oxford University Press,
Oxford.

Hansen, T. F., and E. P. Martins. 1996. Translating between micro-
evolutionary process and macroevolutionary patterns: the corre-
lation structure of interspecific data. Evolution 50:1404–1417.

Harvey, P. H., and M. D. Pagel. 1991. The comparative method in
evolutionary biology. Oxford University Press, Oxford.

Hill, W. G., and A. Caballero. 1992. Artificial selection experiments.
Annual Review of Ecology and Systematics 23:287–310.

Hohenlohe, P. A. 2007. MIPoD: Microevolutionary inference from
patterns of divergence. Software available at http://www
.oregonstate.edu/∼hohenlop.

Hunt, G. 2007. Evolutionary divergence in directions of high phe-

notypic variance in the ostracode genus Poseidonamicus. Evolution
61:1560–1576.

Jones, A. G., S. J. Arnold, and R. Bürger. 2003. Stability of the G
matrix in a population experiencing pleiotropic mutation, stabi-
lizing selection, and genetic drift. Evolution 57:1747–1760.

———. 2004. Evolution and stability of the G matrix on a landscape
with a moving optimum. Evolution 58:1639–1654.

———. 2007. The mutation matrix and the evolution of evolvability.
Evolution 61:727–745.

Kelley, K. C., S. J. Arnold, and J. Gladstone. 1997. The effects of
substrate and vertebral number on locomotion in the garter snake
Thamnophis elegans. Functional Ecology 11:189–198.

Kerfoot, W. C., and A. G. Kluge. 1971. Impact of the lognormal
distribution on studies of phenotypic variation and evolutionary
rates. Systematic Zoology 20:459–464.

Kingsolver, J. G., H. E. Hoekstra, J. M. Hoekstra, D. Berrigan, S. N.
Vignieri, C. E. Hill, A. Hoang, P. Gilbert, and P. Beerli. 2001. The
strength of phenotypic selection in natural populations. American
Naturalist 157:245–261.

Klauber, L. M. 1941. The frequency distribution of certain herpe-
tological variables. Bulletin of the Zoological Society of San Diego
17:5–31.

Kluge, A. G., and W. C. Kerfoot. 1973. The predictability and reg-
ularity of character divergence. American Naturalist 107:426–442.

Lande, R. 1975. The maintenance of genetic variability by mutation
in a polygenic character with linked loci. Genetical Research 26:
221–235.

———. 1976. Natural selection and random genetic drift in phe-
notypic evolution. Evolution 30:314–334.

———. 1977. Statistical tests for natural selection on quantitative
characters. Evolution 31:442–444.

———. 1979. Quantitative genetic analysis of multivariate evolution
applied to brain : body allometry. Evolution 33:402–416.

———. 1980a. The genetic covariance between characters main-
tained by pleiotropic mutation. Genetics 94:203–215.

———. 1980b. Sexual dimorphism, sexual selection, and adaptation
in polygenic characters. Evolution 34:292–305.

———. 1985. Expected time for random genetic drift of a population
between stable phenotypic states. Proceedings of the National
Academy of Sciences of the USA 82:7641–7645.

———. 1986. The dynamics of peak shifts and the pattern of mor-
phological evolution. Paleobiology 12:343–354.

Lande, R., and S. J. Arnold. 1983. The measurement of selection on
correlated characters. Evolution 37:1210–1226.

Lande, R., and S. Shannon. 1996. The role of genetic variation in
adaptation and population persistence in a changing environment.
Evolution 50:434–437.

Lindell, L. E., A. Forsman, and J. Merila. 1993. Variation in number
of ventral scales in snakes: effects of body size, growth rate and
survival in the adder Vipera berus. Journal of Zoology (London)
230:101–115.

Lofsvold, D. 1988. Quantitative genetics of morphological differen-
tiation in Peromyscus. II. Analysis of selection and drift. Evolution
42:54–67.

Lynch, M. 1990. The rate of morphological evolution in mammals
from the standpoint of the neutral expectation. American Natu-
ralist 136:727–741.

———. 1991. Methods for the analysis of comparative data in evo-
lutionary biology. Evolution 45:1065–1080.



000 The American Naturalist

Lynch, M., and W. G. Hill. 1986. Phenotypic evolution by neutral
mutation. Evolution 40:915–935.

Lynch, M., and R. Lande. 1995. Evolution and extinction in response
to environmental change. Pages 234–250 in P. M. Kareiva, J. G.
Kingsolver, and R. B. Huey, eds. Biotic interactions and global
change. Sinauer, Sunderland, MA.

Lynch, M., M. E. Pfrender, K. Spitze, N. Lehman, J. Hicks, D. Allen,
L. Latta, M. Ottene, F. Bogue, and J. Colbourne. 1999. The quan-
titative and molecular genetic architecture of a subdivided species.
Evolution 53:100–110.

Manier, M. K., and S. J. Arnold. 2005. Population genetic analysis
identifies source-sink dynamics for two sympatric garter snake
species (Thamnophis elegans and Thamnophis sirtalis). Molecular
Ecology 14:3965–3976.

Manier, M. K., C. M. Seyler, and S. J. Arnold. 2007. Adaptive di-
vergence within and between ecotypes of the terrestrial garter
snake, Thamnophis elegans, assessed with FST-QST comparisons.
Journal of Evolutionary Biology 20:1705–1719.

Martins, E. P. 1994. Estimating the rate of phenotypic evolution from
comparative data. American Naturalist 144:193–209.

———. 1995. Phylogenies and comparative data, a microevolution-
ary perspective. Philosophical Transactions of the Royal Society B:
Biological Sciences 349:85–91.

———. 2000. Adaptation and the comparative method. Trends in
Ecology & Evolution 15:296–299.

Martins, E. P., and T. J. Garland Jr. 1991. Phylogenetic analyses of
the correlated evolution of continuous characters: a simulation
study. Evolution 45:534–557.

Martins, E. P., and T. F. Hansen. 1996. A microevolutionary link
between phylogenies and comparative data. Pages 273–288 in P.
Harvey, J. Maynard Smith, and A. Leigh-Brown, eds. New uses
for new phylogenies. Oxford University Press, Oxford.

———. 1997. Phylogenies and the comparative method: a general
approach to incorporating phylogenetic information into the anal-
ysis of interspecific data. American Naturalist 149:646–667.

McGuigan, K., S. F. Chenoweth, and M. W. Blows. 2005. Phenotypic
divergence along lines of genetic variance. American Naturalist
165:32–43.

McKay, J. K., and R. G. Latta. 2002. Adaptive population divergence:
markers, QTL and traits. Trends in Ecology & Evolution 17:285–
291.
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